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Page 7: change (A3) to 
f
~ Pl/2(t)dt < ~~~.

Delete the line below (4.1).

Page 8: Insert in footnote before its last sentence:

The strong mixing (A3) also implies that for each

bounded x—set there is a constant K such that

a < t}

- EF(x ,yt+ )F1 (X,yt++ )I < K ( P  Pu ) 1/2
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I 
Let y(4) be a stationary mixing process and JC(~ ) an

approximation to a random impulsive process. Kurtz ’s {I1° results on
approximation of a general semigroup by a Markov semigroup are used to

‘1 prove (weak and a similar type of) convergence of the solutions to (1.1)

and -(i.Zf to jumping diffusions. Previous results are generalized in( various ways. The case of unbounded y(~ ) is also treated as is the

combined jump-diffusion case. Also , a limit theorem for an integral
with respect to ~~pproximate white noise

s r in terms of an it6 integral
is given. The method has the advantages of generality and relative

ease of use.

~
I ~This research was partially supported by the Air Force Office ofScientific Research under AF-AFOSR 76-3O63’~ the Na tional Science

Foundation under NSF—Eng73-03846—A-03 and by the Office of Naval

I Research under N0014—76-C-0279-P0002.
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1. Introduction

In [1), Kur tz gave some fa i r ly  gen aral semigroup methods for

showing convergence of a sequence of non-Markov process to a Markov

process , either in the sense of weak convergence or in the sense of

convergence of finite dimensional distributions. Let y() denote

(a Euclidean space valued) right continuous strong mixing stationary

process. For each e 0, def ine y C (t) = y(t/i2), and for suitable

F,G , define the process x
L
() by

F(x~ ,y~ ) £ L I m
= + G(x~~y~ )~ X

0 
= ~ R , (1.1)

y(t) R~~ .

Khazminskii [2], Papanicolaou [3], Papanicolaou and Kohier [4) and

Blankenship and Papanicolaou (5) have all treated the problem of weak

convergence of x ( )  to a diffusion . The problem is, of course ,

closely related to the original problem of Wong and Zakai [6]. In

this paper , Kurtz ’s resu lts, (together with a technique exploited
in references [3 1 and [5 1 ) will be used to get similar types of

results under conditions which are weaker.+ The method of proof

has the great advantage of being quite straightforward and easy to

use for both the diffusion and jump-diffusion cases.

We also treat limits of systems of the type

F(x~ ,y~ ) 
+ G x ~ ,y~~ + I H~~(x~ )J~~ t (1.2)

1t~~_
where j J

1 5
ds is an approximation to a pure jump process, and

0 ’

we obtain a limit which is a jumping diffusion .

‘References [2] and [3] allowed F and C to depend also on t.
At the expense of extra detai l ,  this case could be handled by
our method .
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Sections 2 and 3 recapitulate Kurtz ’s method of proving con-

vergence of finite dimensional distributions and tightness, resp.

The results ~re recapitulated partly for the sake of self—containment,

and partly to state the precise form in which they are to be used.

Section 4 states the assumptions used in Section 5, wh ich gives the

result for limits of (1.1) when y() is bounded , a restriction

also used in the past references. Theorem 3 gives a result which

is useful in approximating stochastic integrals with respect to a

Wiener process by ordinary integrals. Such results are needed for

identification and related problems (see ~ tlakrishnan [8],, [9]). A

result on convergence of finite dimensional distributions for[ unbounded y(~ ) is given in Section 6, and tightness for unbounded

y(.) is proved in Section 7. Section 8 deals with the relatively

simple case where the input is an approximation to a random impulse

[ process, and (1.2), an approximation to a jumping diffusion, is treated

in Section 9. The result in Sections 6 and 7 cover the much used

case where y( ) is a Gaussian diffusion .

A method similar to that of Section 5 is outlined in Section 4,

1. [ 3 ] ,  for the problem of showing convergence of finite dimensional

I distributions for the bounded y(-) case. The results there are

not in a particularly usable form , and actually require more

I smoothness of F and G than needed here since partial differential

equation methods are ultimately used there. Rere, we do not need to

I solve or even to approximate solutions of partial differential

( equations , but merely to check the action of certain operators on

smooth functions.

IiU
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*2. Convergence of Finite Dimensional Distributions

Let (c2 ,P, $~) denote a probability space , ~ ~~~ 
anondecreasing

sequence of sub a-algebras of ?,.V the space of progressively measurable

real valued processes f on [O,~~), adapted to { and such that

sup Elf(t) l <~~~~ . Let f and f be in .V. Define the limit
t

“p-~lim ” by p—lim f = f if f sup sup Elf (t) < ~ and
n ~ 

n

E l f (t) - f(t) -
~ 0 for each t. For each s > 0, define the

n

operator 9(s): .~t -÷ ..~I by Y(s)f = function in ~~~
“ whose value

it t is the random variable E
9

f (t+s) . There is a version which

is progressively measurable ( [ 1] ,  Appendix) and we always assume that
this is the one which is used . The ~I(s), s > 0, are a semigroup of

linear operators on .
~~~
‘
. Let denote the subspace of ~if of

p-right continuous functions. If the limit p—lim (9(s)f—f)]
s-~0exists and is in .V~, we call it Af and say that f ~ ~Y (A).

The operators .~Y(s) and A are analogous to the semigroup and weak

infinitesimal operator of a Markov process. Among the properties

to be used later is ([1], equation (1.9))

I
— f = I 9(t) Af dT , f £ ~~(A), (2.la)

J O

or , equivalently

IFrom [11, with slightly altered terminology. Sometimes we write 
~t

and sometimes f(t) for the value of a process f at time t.

I
~~~L.
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1 4

I S
E ~ f(t+s) — f(t) J E~~ Af(t+i)dl~ for each t ~ 0. (2.lb)

I 
t 0 t 

*
If , for some process z ~~~~ 

= 
~~~~~~~~ 

s t) , we may write

I “~~~~ , T~ and A
L for 

~~~~~~

, ‘,(t) and A , resp. Let C0 and C~

I denote the spaces of real valued functions on Rm which vanish at

and which are continuous and which have continuous partial derivatives( up to order i (and which also vanish at infinity) , resp. Let ~ and

denote the sets of these functions which have compact support.

Th..~ followin~j Theorem (a speci1.ili~~it ton ot (1],, Theorem 3.11) is

[ ~ ur  m a i n  tool for dealinq with (1.1). l l e n c e l or t h , unless otherw ise

mentioned , • 0 replaces n “ in p-u rn.

I:
Theorem 1. Let Z’ () = x t (.),y t (.), t 0, denote a sequence

of Rm+m valued right continuous p~rocesses, x() a (Rm_valued)

11 Markov process with semigroup Tt m~pping C0 into C
0 

and which is

strongly continuous (sup norm) on C0. For some A 0 and dense set

j D in C0, let Range (A_A I D) be dense in C0 (sup norm,

I
A = infinitesima l operator of x(~ )). Suppose that, for each f t

there is a sequence (f1’} of progressively measurable functions

adapted to { Q~~} and such that

I p_lim [f
L 

— f(x t ( ))) = 0 (2.2)

I p_ lim [AC f L 
— Af(x

t ())J = 0. (2.3)

I Then , if x
L (O) x(O) weakly, the finite dimensional distributions

I of x
t () converge to those of x ().

I The ~-a1qebras will often be completed , but the same notation
will be used.
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Equ~t t  t on s  ~~~~~~~ and (.. 3) Sire e~iu i v~t1oii t t o  ( t h e  l i m i t s  ~t r e  t aken

ot 1’ach t ~t s

sup E l  t ( t ~ — t ( t )  ) J ‘- j ’- , F~ t 
1 ( t )  — I (x

t ( t )  ) I 0 (2..~t , t
sup E~ A

t I ( t )  A t  (x t 
( t ) )  I ~ t ( t )  - Al ( X

L ( t )  ) I 0. (.~.3’)
L

F 
__________________________1 . Ti’jhtnt’s~

Lot y ( ) , y~ ( ) , x ’ ( ) ~1oiiot o t ho functions in the model (1.1)

1. 
~~~~~~~~ 

.t nd ~io not  o t h e  (9O11fl ~ l O t t ’d) ‘~ 
(y ; S s t

..md ~‘(y~ , s ‘~ t ) . Write ~ ~~~~~~~~~ ~~~~~ ~~~~~~~~~ 
E 

~~~ 
E •~~ ____

A~~iin , we doscribe results t~~orn [1]. Let 0m ( 0 ,~~) deno te the

space o f Rm valued functions on L0 ,”~ which are right continuous

on 10 ,”) and have i.oft hand l i m i t s  on (0,”). Note that x
t
( .)  t

~~~~~~ w . p . ] . . Suppose that the finite dimensional distributions

ot x t ( . )  converqt ’  to those oLa process x(~~), where x (•) has
ft

p. t t h ~; in P (0,-”) w .p.l. Then , as noted in [1], bottom of page t~~8,

~~~~ ~~ is ti~iht in D~
’(O, ”) i t  ~f(x

L (.)) is tight in D(0,”)

to t each I C . (C is used there , but i t can be replaced by+ C3.t

It t o  I lows t ram ( I )  , Theorem 4. .~0, tha t  I f (x t 
( . ) is tight in D 10 ,“~~

i t  x~ x0 w e ak l y and it , t o t ’  each real 1r 0, there is a random

v a t  iaI)1&” ‘
~ 
(~~) such that

E~~ (~~~) t-~ m in~~l, I f (x
~ +~

) — t t x ~~)]~~~, (3.1)

for all 0 ~ t T, 0 ‘r ~ ~S 1 , and

~~~• 
~~y set ot functions dense in ~ in the sup norm.
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u r n  lint E (IS) = 0. (3.2)I ó-~0 £~ O

I In [11, p. 629 , Kurtz suggests a method of getting the

This method is developed in Lemma 1 and is used in the sequel. The

( f t 
below wi l l  be obtained in the same manner as we wi l l  obtain the

f
L of Theorem 1. We have (~ I f i t  = s u p l f ( x ) j )

I .
E~~[f(x~~~ ) — f(x~ )]

2 
< 2 1 t~ I I I~~~

f(x ÷~
) — f(x~ )

1. (3.3)

+ jE~ f
2 (x

~÷~
) — f2 (x~ ) I

Lemma 1. J~~ f t C~ ,and let there be a seq~1ence (f~ } ~~~~~ . ~~

El 
_ _  _ _ _ _ _ _ _ _ _
where (f C

)
1~ 

~. 9(A~), i 1,2, and such that, for each real T > 0

there is a random variable M such that

suplf~~(t) 
— t (x~ )l -

~ 0 w.p.l , as ~ 
-
~ 0 (3.4)

t~T

I sup (f E ( t ) ) u
l M , w.p.l , i = 1,2. (3.5)

Then {f(xC (.))} is tight in D[0,~~).

Proof. By (2.1)

- (f E ( t ) ) i 
= 

J

U c A c ~~~~~~~~~~~~~~~~~i

1 0

from which (3.3) to (3.5) yield a ‘r~~(~S) of the form (for the interval

[0,T)) max (l, ’~~ where
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~ M~ ( ~ + ~ sup~ (f
t ( t ) )  ~ - f~ (x~ ) I ’

i=l t’~-T

where M 1 is a random variable. 
Q.E.D.

4. Assumptions for Model (1.1); Bounded y ( ).

(Al) F(’ , ’~ and ~~~~~ are continuous, and the f i rs t par t ia l

and f irst and second x-partial derivatives of G and F,

resp ., are continuous.

(A.~) There is a constant M such that

IF(x ,y) l + G(x ,y) I M( 1 + l x l ). 
¶

(Al) and (A2 ) assure the global existence of solutions to (1.1).

(A3 ) y ( ~~) is a r ig ht continuous,  bounded stationary process and

EF(x ,y 5) 0, each x.

There is a measurable function ~‘ ( ‘ )  such that

sup 1NB.~ I B  ) — P ( B  ) I
~ 1 2

1

where B1 
t 
~
(y
~
,u t), B2 

t u “ t + 1 ) .  ~~~~~

I ~‘-(t)dt “. (4.1)

(4.2) is weaker than the conditions on the mixing rates in [4],.

Define the operator A on by (the subscript x denotes gradient)
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At (x) ‘ t-:C ’ (x , v )  f (x) + f d  t EF ’ (x , y )  (F’ (x, y~~ ~) ~~ 
(x) (4.2)

1 ( x l  - t t x l ~~a 1 ~x )

I
Al  1 .t nd .‘~ 

) , t ho i i t t  eq t a  is on t he r i q hi t ox i st . In t act , t h e

t :n~~’t  opor l t ’e~~qt i t ’ m t  eq ra  1 i .it’so lut o lv  c o nv e rq e nt  • e. F I d

~‘o n v o t q o s ’f an i t  o t m l v  in  x . Fu r t h e t  m o r e , it t C t lion A t  (x )  i s

con t I U U OU S  lv J i f  t ~~ r e ’ f lt  t . i b  l o  in  x , and t he  q t a d  r en t of A t  ( x 1  is t ho

u n ct  ten  ol~t . 11  nod i’v inT l V r epl  .ic i r t ~: t h e  a t  qumel ’ t t  ot  F i n  4 . .~ 1

by ~ts x - - q r a d i e n t  . It this is done , th~ ir the  im p r o p e r  I ebosque

j tn t eq t a  1 St 1 1 1 is absol ut ely  c e nv o iq e n t  , un i  t e r m iv  in x •

~A4 ) A i~~~t h t ’ r e s tr i c t i o n_ to  t~~~ ~~t the s t r o n g __i nt i n i t o s i m a l

ej e r a t o~ et  a s t r~~ntJ__Ma r ke v  c on s er v a t i v e  (no t m i t e

escape t ime ) d i t f u s . i o n  process xv ) , w i t h  sem igroup Tt .

‘V maps C into C and i s s t rong  I v  cent  i nuous on C
— 0 ——  0 ~~~~~~~~~ — — — -- _______________ ~ — —- —— 0

“~~~ -~ 
is ritjht con t inuous. i.e., “

~~ 
~ ~~~

each t 0.

The sot  \ — A l  C - A~ I , I C * i s  dense ~n

C t o t  some \ ~

T h is  o i l  ows read I ly from t he stronq mix intl . It is also a con—
Se~ltt0ttce of I~i 11 inqsley [7] , p. 170, by us in q  EF (x ,y ) 0, (4.1)
and t he I act that the functions have bounded support S (let r 1
s ’ - ’  i n [ 7] , eq nat ion  ~ :t . ~ 3 1 , wi t hi .r p roper-  i dent i i i cat ion
ot , there) . We will use this and s i m i l a r  tacts t requent  ly in
the sequel.

I
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Remark on (AS). Let f ~ C and let f denote e ther Ff ,Gf

of any of the g 1 or f1 introduced below . Condition (AS) is

introduced only because we want E
~+5

f(x
~÷5 i t+s+u) to converge to

E~T(x~ ,t+u) in probability as s 0. Many of the calculations in

Theorems 2 and 4 involve this type of right continuity together with

uniform integrability .

Remark on (A6). Some condition such as (A 6) is required for

use of Theorem 1. Let A
~ 

denote the strong infinitesimal operator

of Tt acting on C0. Then (A6) is equivalent to Ac being the

closure of the operator A (of (4.2) acting on C2, or on C3 ,

since is dense in ~2 in the norm 
~I 1 2 = sup(If(x) I ÷

I + ~~~~ ))• This condition does not seem to be particularly

restrictive . We only remark that it holds in the two extreme cases:

(1) the b1(’) and a
~~~
() in (4.2) are bounded , satisfy a uniform

Holder condition and a(S) is uniformly positive definite; (2) where

T
~ 

maps C2 into C~ and is strongly continuous on C~ with

H respect to the norm I I f  I 2 defined above. (The same remarks were

made by Kurtz [1], p. 632.)
can

In case 2, we /actually consider Tt as acting on the Banach

space C~ with norm I )~ I 2 ’ and where f(x) and its first and

second derivatives go to zero as l x i -
~ ~~~, and modify (A4) accordingly .

In this case, the closure of the operator A (the domain of A is

C
2 
here) is just the strong infinitesimal operator (of T

~
) acting on its

domain in C~ . Suppose that there is a matrix valued c(•) such that

= a(x), that (A4) holds (as modified above) and that

b 1( . ) ,  c~~~( . )  are locally Lipschi tz.  Then (see remarks below ~fl

bounding), it is enough to prove Theorem 2 under the additional condition

that b
~~
(i, o . - ( • )  are bounded and , for arbitrary N , arbitrarily
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I smooth out of the sphere 5N of center 0 and radius N. Assume that

J b1( )  and o.*) have continuous first and second derivatives. Then

by the above remark on bounding , we can assume that the coefficients are

bounded on Rm . Then (Gikhman and Skorokhod (131, Chapter 8.4),

case (2) above holds. The conditions imposed are weaker than those

in [4] when F and G do not depend on t.

Remark on bounding the coefficients. Suppose a(x) = a ( x ) a ’( x ) ,

where b.(.) and o. . ( . )  are locally Lipschitz continuous and x( ),

I the diffusion with generator A, is conservative. Define

an N-truncation as follows. Let b~5.). 
c~~j (~ ) equal b~ ()1 o~~ (),

resp., in SN V be bounded on Rm , have bounded derivatives of any
,at least1 desired order in the complement of S2N and be1as smooth in S2 

- SN N

t as b1 (~~~ 
(J~~ ( )  are. Then the Ito process x1

~ C ) with coefficients

bN ( ) ,  O~~. (.) is called an N-truncation of x ( )  if the (.) and ~N ~~

can be obtained by a rt~dification of F and G in Fe_SN . N-truncations

always exist since wa cart miltiply F arid C by suitable sn~oth real valued

1 functions mf (x) and mg (x)~ resp. , which eqpal unity in S
N
. We only need

I prove Theorait 2 and verify (A4) and (A6) for sai~ N-truncation for each N.

The proof of the assertion will be cinitted. It is essentially a note

that the parts of xN (•) and x ( )  up to the first escape from SN 
are

equal, and that the probability of escape from SN on an interval [0,T]

I goes to zero as N -
~ ~~ , for each fixed x0. Here, wa suppose that x ( )  are

defined with respect to the sane Wiener process.

5. Proof of Weak Convergence; Bounded y ()~~ and (1.1)

The main job in using Theorem 1 is to get f
C 

when f is given .

I I To do this ,  we use an idea exploited for a similar purpose in

Section 3 of E5J and in Section 4 of [3]. We look for functions of theLi H
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forni* f (x,t) = f(x) + Lf 1(x ,t) + L 2 f~~(x , t ) ,  and def ine  f L (x~~, t )  = f t (t)

D e f i n e  operators  A
L 

and A~ as follows . Let y - ( x , t )  be smooth as a

tunction of x and such that g(x ,t) is a function of ~~L
, s .-

for each x.  At x = x~~, y = y~~, let

A t g(x , t )  = q ’(x,t) [ F ( x l Y )  
+ G(x ,y) 1 ; (5.1)

i.e. , is A t but ac t ing  on t J ( x t .t )  considered onl y a function

of its first argument. Let A g(x ,t) be :St q(x,t) , but where q

is c o ns ider ed  to be a function of its second aiquinon t onl y • Assume  f o r

the moment that A
t 

= A L 
+ A L . Then , in order t o  use Theorem 1 , we appi y

to f~ (x,t) , and insist that

I t
~~
(x) + 

i ,x~~~
1t) + ~

2
f~ ( x , t )~~~~h [ ~~

? ( x , t )  
+ G ( x , t ) ]  +

+ A
1 (tf ~~(x ,t) + t 2f~~(x,t)) (5.1’)

= Af(x ,t) + 0 ( t ) ,

~herc equation (5.1’) must determine both the operator A and equations

vieldinq the t t (x,t) . in Theorem 2, we merely write down formulas tor

t.he t t (x ,t) and verify the conditions of Theorem 1.

1’heorern 2. tinder (Al) to (A6), x
t (.) converges weakly in

Dm (O ,~~) to the diffusion x(~~), with  initial condition x0.

Proof .  F i r s t  (Pa r t s  1 to 3) we prove converqence of finite

dimensional distributions , using Theorem 1. in Pa r t 4 ti-iht ness is

i ‘r ~ ~vetl , via Lemma 1. h enceforth , f is a 1 i xed e len ient  ot C

: inct C~ is dense in C
2 in the norm l i t  L. ~~t i s  ~-nou~;h

to work with C
1
.

For each x and t , f~~(x,t) will be a function of y 1 , s t.

The discussion itt this paragraph is purely tormal .
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Par t  1. f~~(x , t )  is defined to be a solution (suggested by

( 5 . 1 ’ ) )  to A f ~~(x , t )  = —g 1(x ,y~ ) _F ’ ( x ,y~ ) f ~~( x ) .  More precisely ,

d e f i n e  f~~( t )  = f ( x~ ,t), where

f~~(x ,t )  = 
J E ~~g1

(x~~Y ( ~~~ + s ) ) d s  ( 5 . 2 )

L = !:~
. J E~ g1 (x,y~ ÷5

) ds

(both forms will  be used) . The improper Lebesgue ititegral exists and

is bounded and absolutely convergent, uniformly in w ,x and in t in

I bounded sets , by the strong mixing ( A 3 ) ,  and the fac ts that

E F ( x , y )  0 and that g 1 has compact x— support .  Furthermore , there[ are versions of 4(x,t) and 4(x~ ,t) which are progressively

[ measurable.

We next show that f~~(t) i ~~(A
t ). We have

I A
L
f1(t) = p - u r n  ~~~~~~~~~~~~~~ - f~~(x~~,t)]/6 (5.3)

I = p - u r n  ~~~~~~~~~~~~~~~~ -

I + p — u r n  [E~ f~~(x~~, t+6 )  — f~~(x~~,t) 1 /ó

if the limits exist and are in .Y~. It is easy to verify that the

I second l imit  exists , is in 
~~ and equals -g

1
(x~~,y~ )/~~~. Now ,

f~~(x ,t )  is differentiable in x. Indeed ,

I
f~~,~~

(x .t) = ~~~

I since J I E ~ g1~~~(Y ÷5 ) i d s  converqes uni formly in x ,  and in

t in bounded seta, as T -~~ m • This fact together with the representation 
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E~~(f 1(x~~~~, t + S )  - f~~(x~ ,t+6)J/iS = (5.4)

1 ___________________

~ f 
E~~[f ~ (x

L 
, t+~~) l , [_ ~~~~~~~~

t+U + G (x
~+~~

y )]dut+u,x t+u

and the facts that is right continuous in the mean at t, and that

the integrand is zero out of a bounded x ,y range, can be used

to show that the f i r s t  limit on the right side of (5.3) exists , is in

and equals (x = x~ , y y~ )

+ G(x,y)) A L f~~(x,t) . (5.5)

Part_2. With x = x~ , we will define f~~(t) = f~~(x,t), where

f~~(x,t) is the formal solution to

A~f~~(x,t) = -g2
(x,t) (5.6)

_ [F
~~(x sy~

)f l, x (~
(
~
t) + GI (xsY

~
)fx (X) 

— Af (X )1

where A is defined in (4.2). More precisely , define f2 by

f (x,t) = L~ f E ~g2 x.t+s ds. (5.7)

There are versions of f~~(x,t) and f~~(x~ ,t) which are progressively

measurable. We now ignore the G terms, for the difficulty lies with

the Ff
L term . The improper Lebesgue integral
1,x

iE~cj2 (x,t+s)Id8 
of (5.7) converges absolutely, uniformly in ~ ,x

~~1
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and in t in any bounded set, by the strong mixing property and the

d e f i n i t i o n  of A. (Indeed , this is the reason tor the choice of A.)

j To see t h i s, note tha t  ( 5 . 7 )  (wi thou t  the C—terms )  equals

~~1 ds(E~F’(x ,y~ )f~ (x ,t+s) - E F ’ ( x iy ~ ÷5 ) f
~~~~~x , t +sH , ( 5 . 8 )

whe re the average va lue  of the c o e f f i c i e n t  of its i s  zero ( by

L stationarity and the definition of A) , and use the stronq ml x in tj

condition . In fact , using the ch anqe ot  v a r i a b le s  s i~~ s’ , it

c iii be seen from (5.8) and the strong mixing and compact x-support

of f~ that l f~( t ) i is bounded w.p.1, uniforml y in x and ~ and

in bounded t intervals. Furthermore , g ,(x,t) is continuously

differentiable in x. In fac t , the convergence assertion in the

sentence above (5.4) also holds for g
2 

replacing and

t 2~~~
(x,t) = i~~jE~g2 (x,t+s)ds.

Expression (5.3) holds with f~ replacing f if the limits

exist and are in 1/~~. Aqain , we readily v e r i f y  that the second

- - - 2limit in (5.3) exists , is in and equals — C3)(X ,t)/t (x = xt
).

An argument similar to that leading to (5.5) yields that the tirst

limit in (5.3) exists , is in V anti equals (5.~~) with

replacing f~ .

Part 3. Now, we apply Theorem 1. Since

L
sup E (If~~(t) I + I f~(t)l)
t,

~~~

0

~~~~



_~~- - ~~~. 
- - -_  - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

15

we hart’

p—l i m [ f t — f ( x t ( . ) ) J = 0.

Now , ca l cu la te  A L
f
L
. By Parts 1 and 2, with x = x~~, y =

A~ f t (x , t )  A
t
f(x ) + ~A

1 f~~(x,t) + L 2A
t f~~(x,t) (5.9)

(F(x ,y)/~. + G(x ,y) l ’t .(x)

+ t [-F ’ (x , y ) f ~~
( x ) / L 2 + (F(x ,y)/t + G(x ,y)) ‘f

~~~~
(x,t)]

+ 
~~~ 

f t ’ ( x sy ) f
~~~~~

(x . t)  + G’ (xsy ) f
~~
(x) - Af(x) }

+ (F(x,y)/t + G(x .y))’f~~~~(x~ t))] =

= Af(x) + t [C ’(x ,y)f~ (x ,t) + F’(x ,y)t~~~~(x,t)1

. 2 ,+ t C (x , y ) f
2

(x ,t).

~e now readily verify that p_lim[A t f t - Af(x t ())] = 0. Since

= x 0, Theo rem 1 implies  that  the f i n i t e  dimensional  d i s t r i bu t ions

converge.

P a r t  4. Tightness. For tightness, we use Lemma 1. Each f ~.

can be approximated uniformly arbitrarily closely by an f t C 3 . Thus ,

by the Lemma and discussion preceeding it , we only need prove that

‘3 % 3
(f(x

t 
(~~

))} is tight for each f i C . Let I t C and construct

f
t

1
, f~~ exact ly as the ~~~~~ were constructed above , and de f ine

(t) as above. Then f and (f ) are in ~J(~ ) and there is

:

~

::attt 

M such that w.p.l ~~~~~~~
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SUP I A
t (f L ( t ) ) h

I < M, i = 1,2 ,
£> 0 ,W ,t

suplf~ (t) 
— f(xL (t))I -

~ 0, as L -P 0.
t

Thus, Lemma I implies that {f(x
1
(•))} is tight in D[0,co) , for

- . meach f t C ; hence {x (~ ) }  is tight in D [0,~~). The tightness,

together with the convergence of f i n ite dimensional dis t r ibut ions

implies weak convergence. Q.E.D.

An approximation to an integral. In problems where changes of

measure via Girsanov-like transformations are involved , such as occur

in some identification problems (Balakrishnan [8 ], [9 1), we need to
It

get limits of integrals such as z~ = q ’ (x~~)(y~~/ e ) d s ,as  ~ -‘ 0.
1• J o

Let C1 denote the real valued functions on Rm+m +1 with compact

support , whose 1th partial derivatives are continuous. 
m~~~+1= I (y /t-)ds and u = (x , Y ,z ). Then U t iS R va lued  and

L~ S

R 
G(x

C
,y

L
) + -~~

where

G(x ,y) = (G(x,y),0,0)

11 F(x ,y) = (F(x ,y),y,q ’ (x)y).

The remarks below (A6) all pertain here also.

S.

_ _  a
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ejn.~~~ Let q(~~) satisfy the conditions on F(S ) in

(Al )-(A2). Assume (Al) to (A6) where (A4) and (A6) hold for the

process u(~~) and operator A defined on ~2 ~~

Af (u) = EG ’ (x~y0)f~~
(u) + 1 ’ ~~~Yü

) ’
~~~Y t ) 1u Hu (5.10)

Then u
t
() converges weakly in 0m+m +1 [0,~,) to u(•)

y(~~),z (-)), U
0 

= (x 0
,O,0), a diffusion with gent’vato~ A ~~

The process Yt is a Brownian motion with c o v a r i au c ~ R 1:y
~
y ’il

~~
.

0
/ItO

The limit z(~~) has the representation (the expectation is over y (•))

in terms of the limits x(-),Y (~~)

d z q ’ (x)dY + I1EF ’(x ,y0)(q’ (x)y 1 )~~dl~ dt. (5.11)
J o

(The last term in (5.11) is the so—called correction term of the

limiting integral approximation.)

The proof of weak convergence of u
t (.) to u(’) is simpl y

an appl ica t ion of Theorem 2. Once the weak convergence is known ,

then the representation (5.11) is not hard to get , and we omit the

dot  a i is.

6. Unbounded y ()~~ and (1.1).

Our approach here will be only a little different from that in

Section 5. In order to avoid conditions which look overly complicated ,

we specialize F(x ,y) and G(x ,y) to F(x)y and G(x), resp.

1~
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I 
Assumptions. In this sect ion , the conver ienco of t m i t t ’ d i men s i o n a l

I distribution is proved , and tightness is t reated in the next sect lou .

Owing to the unboundedness at y ( . ) , t t I s convenient to t i - t it i - i  a I l y

bound the  F and C. We do t hi s by de~i 1 1 ng with a s e j  uence of

approx i m at  ions to the or i i ifla 1 ~ i ocess~’s - The opt’ ia t ot A i s st t I I

del m e d  by ( 4 . 2 ) .

tRi ) F e)  and its first ,inil  St ’COll d o t d e i  part jal l e t  t v a t i v i ’s

~L_° 
continuous.

( 1 1 2)  ~; ( . and its f irst or d er  j~a i t i a I  dt’ i i ~ ’~t t  t

continuous.

( 8 3 )  
~~~ 

(again  com~ let ed is right cent i nuous , i nd sa

is the stationar1 process y(~~
) , w.p. 1. (Sec the rem.i t k

concerning (AS).)

Define

1- 
2 J~~~~’ ‘t - 10 1 

+ s
t

~~~~~

(134) For some -
‘ 0, sup E J 0  ~~~~~~~~~~~~

Thus, v~ and v
~ 

are well—defined .

I
( 135) E 

~~

‘ ~~~~ some ~ ‘ 0.

I “ 2 + -

1 

(86) sup E(f dsIF.tyt+
v
~ + 

— E y t + 5 v
~~+5 I )  -‘- i ~~ nv .

S’ .

N a t e  that Ey t + v + FsY~~ q f0
Et+sYt÷s+u~~ ~0~~~

t~
’t+u~~ 

5 t u t i

1 lees not depend on t or s, and is well-dot m e d  by . 134) ,

I
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Owing to the special form of F and G , there are locally

Lipschitz b (-) and c (- ) such that (see (4.2)) c (~ )o ’(~~) = a(.).

See also the remarks on bounding below (A6). xN and x L P !~(.)

denote the N-truncations of x(•) and x t (.).

(B7) For a sequence N ~~ , there are N-truncations which

satisfy (A4) and (A6).

Remark on assumptions (B3)-(B6). Let w() denote a vector

Brownian motion , Q a matrix with eigerivalues in the open left half

plane and let D and G be matrices. Define processes Y(- ) and

y(•) by

dY Qy at + Ddw ,
(6.1)

y(~ ) =

Then (B3) to (B6) hold. In this case, we can let and -~~~~~

measure Y ,  s t,” t-
2
, and Y ,  s ‘- t, resp., in all the foregoing .

Then v
~ 

is proportional to Y~ and IE tYt+S~ ~ ~~~1

c2s, where the

c. are positive constants.

Theorem 4 deals with the convergence of finite dimensional

distributions.

Theorem 4. Under (Bi) to (87) and the first sentence of (A4),

the finite dimensional distributions of x
1(.) converge to those

of x() with initial condition x0, as u -
~ 0.
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proof. If the finite dimensional distributions of x
t
~
N (.)

converge to those of xN (~~) (initial condition x0
) as L 0 for

a sequence N ~~ , then the conservative and the strong Markov

properties of (A4), (B7) yield the theoreru-t. So we only need prove

convergence for a fixed N. Consequently, we may assume that F

and G are bounded and drop the affixes N.

The details are very similar to those of Theorem 2,

and we only make a few remarks. As before, define f~ and f~ by

f~~( t )  = f~~(x~ ,t), f~~(t) =

where f
e
(X ,~~) is defined as in Theorem 2. These functions are

no longer bounded , but still sup E~ f~~(t) ~- ~~. It is rather
t, c->O

straightforward to verify (in fact, easier than in Theorem 2 owing

to the special form of F(x,y) and G(x,y) here) via (Bi) to (86),

that f~ i- ~~(A
C) and* take the same values as in Theorem 2.

Fur thermore , the expectations of the absolute values of the coefficients

of ~
. and on the far right side of (5.9) are bounded , uniformly

in L~~ A lso

sup E{ A Lf t t + t f
L ( t )  } c ~~.

t,C’0

Thus,

*For example , to show that the expression for A~ff (t) is in .~‘ , we
note that the compact support of f and (B4) to (86) imply uniform
integrability of the expression . This, together with (33) yields
p-right continuity.
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p -l im [f t 
- f(x

t ( ))) = 0 and p_ l im [A C f L 
- Af(x

L (.)H = o,

from which the theorem follows, by Theorem 1. Q.E.D.

7. Tightness; Unbounded y ()~~

owing to the unboundedness , it is more difficult to prove

tightness via the method of Lemma 1. To avoid (what are at the

moment) awkward conditions , we suppose that y (~~) satisfies (6.1).

Then the f~ can be explicitly evaluated and the proof is easy.

and that y (~~)

Theorem S. Assume (81), (B2), (B7) , the first sentence of (A4 )

satisfies (6.1). Then {x C (5) I is tight and converges weakly to

x (~~) as L 0 .

Remark. The tightness argumen t only uses the compact support

of f , (Bl)—(B2) and (6.1).

proof. The method and notat ion of Lemma 1 and Theorem 2, Part 4,

WL ll be used here . We need to show that , for  each T and each
- 3

(i) lim sup
~

f ( x
t

) — f L
(t) = 0 w.p.l

t-~~0 t’-T

(ii) ( f t
)2 ~

(iii) fl~i~ ~~~~~~~~~~~~~~ < ~~ , j = 1,2, w.p .l.
C-* O t~T

In our case , there is a matrix C 0 
such that

— r
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L f~~(x,t) = IF(x)C0Y (t/L
2))’f

~~
(x)

I g2(x ,t) = {F(x)y (t/~
2)~~’[(F ( x ) C

0
Y ( t , ’ L 2 ) ) t f (X )

~~~

+ G’ (X)fx (X) 
— Af(x).

f ( x ,t) is a quadratic form in the components of Y(t/t2) where

the coefficients are bounded differentiable functions of x with

1 compact support. Also, as is readily verifiable , (fL
(t))2 t~

and A~ (f
t
(t))3 ,j = 1,2, Mve terms in powers of the components of

Y(t L
2

) up to 2j+l. Thus , to verify ( i )  and (iii) it is enough

to verify that for each T -S 0

Urn SUP t.)Y(t/C2))
3 

= 0 w.p.1. (7.1)
c-’-O t<T

~
t Equation (7.1) holds since, for each a o, the Gaussianess,

stationarity , and special form (6.1) imply that there are finite

w.p.l u~-functions C1 and C2 such that IY (t)~ C1~~+ C2 for

all t, w.p.1. Q.E.D.

8. An Approximate Jump Case; (1.2) With No y
t (.) Term

Since the classical papers of Wong and Zakai [6), the problem

of using It~ or other types of equations to approximately model

processes which are the solutions to ordinary differential equations has

-- received much attention; e.g., ( 3 1 - ( 5j  and Sections 5 to 7 above.

I L
q 

-~~--~ ~~~~ - 
-~~~~~~~~~ 

—
~~~~~~~~~~~

-
~~~~

— -
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Alternative approaches have been taken by McShane {lOJ and Sussmann

[11) who sought either a theory of integration or a d i f f e r e n t i a l

equation and a topology on the input functions so that the output

is a continuous function of the input. The differential equations

which were of the so-called Stratonovich form , which , in fact , are

precisely It~ equations with appropriate dynamic terms.

Little has been done when the input is an approximation to an

impulse (its integral is an approximation to a pure jump process ).

Marcus [12] has done some work along McShane ’s “belated integral”

point of view . This work (121 has some interesting aspects , but . -

also a number of shortcomings. The dynamics are rather special ,

being (in part) analytic functions. This is a disadvantage in any

approximation theory , where robustness is a key word . Some heavy

lie algebra machinery was used , and the form of the results tended

to obscure the basic simplicity of the problem . Also , a very

particular impulse approximation was used (piecewise constant). In

this section , we take a simple minded but inherently natural and robust

approach , using pathwise approximations and limits. The limits being

either ordinary or stochastic differential equations with impulsive

or jump inputs.

Let N (dsxd y), i = 1,...,k, denote a sequence of scalar
( f t —valued random measures and define N.(t) = t~ N~ (d sX d a ) ,  where

1 j 0

N.(.) is taken to be right continuous. The range of the jumps of

N (.) is a bounded set ~~~ 
Each N . ( • )  is assumed to have a

finite number of jumps on each bounded interval w.p.l , and the



r ____________. 
______ -- — — --- - —

~~
---

~ 
-

~1

24

probability is zero that different N~~C . 1 have simultaneous
b

- 
jumps.

In this section, we deal with the equation

= G(x~ ) + ~~F1~ (x~ )J~ (t)1 (8.1)

• where the input J~~(t) is an “approximation” to the impulse N~ (t).

Figure 1 illustrates some ways in which an actual integrated input

J J ~~(s)ds might approximate an ideal integrated impulsive input N.(t) .

0
In the figure a j ump of Y occurs at t = t0 . With approximation ( 1) ,

= Y/ C on [t 0 ,t0+e] . Define K . ( x ,y)  to be such that

x + K.(x ,Y) is the solution to * = H~ (x)Y at t = 1, with x0 
= x.

It is convenient to start with the vector of ideal integrated

inputs N() ={N
~~
e), i < k} and to get the actual ]Xip.ItS J~

from this, as indicated in Figure 1. When the parameter is c, we work

only with paths for which the interjump”of the vector { N
~~
(
~
),

i = l,....,k } are > c. Obviously, this involves neg lecting a set of

paths whose probability goes to zero as ~ -
~ 0 , and it has no e f f ec t

on the limiting process, Thus , for our “limit” results, only the case

of one input need be treated , and unless noted otherwise set k = 1

and drop the indices i on J ,N ,I1 and K. Let N ( S )  jump at

t = c~~, its ~th jump time. Define p~ = J~ /Y~ on [a~~a~-l- C1~ and

equal to zero out of LI [G , a .+C] and define P~~=J~~~~ds. Thus

_ _  1 J
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P t 
- P t 1. Now (8 .1 )  can be rewri t ten in the form

x~ G(x~ ) ~ 
Fl (x

~
)Y

1
pt
~ 

on ~~~~~~~~ , (8.2)

= 0(4) otherwise.

The va lue  of p~ (~ ) can depend on the j ump t ime and size and on the

st at e  p r io r  to the j ump (and on the index i in case ( 8 . 1 ) ) .

S UflI}~ t i.

(C 1) The C and l(~ are continuous.

(C2) There is one and only one solution to = 0(x), for

each x0 
in Rm ; for each T ‘ , the solution is

bounded on (0 ,T1 uniformly in bounded x0 
sets.

(C3) For each i, there is one and only one solution on [0,1]

to ~ U1 (w )V for each V ~ R~ and w0 L Rm . This

solution is bounded, uniformly on bounded (~ 0,
Y) sets.

y~4) There ate real numbers m 1 ~ 0 , M .- “ , such that

~ p~~( t )  .. on the ~~~~~~~~ intervals and 
L

(~~~)

is continuous.

(‘5) I t  0 
1 (t) where l1~~ (~~) is bounded and continuous

on [0 ,11 and 
f~~~~

(s)ds i . Def i ne w t e)  ~y

= C (w)~~
t
(t) + U~~(w)Y. For each i , let w t (~~) e x i s t

~tnd be bounded on 10 , 1 1 uniformly on bounded (Y ,w~ )

set s  and in i , ~ 
( . 0~ 

t o r __some t. 0.

-
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Remarks. (C2 ) implies that  x ( )  is cont inuous ly  dependent on

x 0
, and (C3) implies that  ( f o r  each i )  w ( )  i~ con t inuous ly  dependt’n~

on w0 , Y.  (C 2 ) ,  ( C i )  and (C S)  are p a r t i a l l y  redundant , but i t  seemed

easier to state the assumpt ions in this way .

Let w H1 (w)Y and w~ w0
. Then (CS) and (Ci) imply that

11 1w
t (t) - w(t) 0 as 0 u n i f o r m l y  on (0 , 11 and on bounded

(Y , w 0
) sets , and in ((t t

( . ) } .

V
T~eore.~~~~ Assume (Cl ) to (C’). Let x(~~) be definod~~y

x x 0 + 
J

G (x )ds + 
~ J K. (x _ 1 a)~~~(da~ ds) . (8.3)

ii t 0 i R~ s

1 L~et x~ E x0. Then for each T

1 ~ sup ~~~~~~ 0 as ~ ~ 0, w.p.1 ,
tLT

11 
________where T tO ,T1 — V [~~‘ ~~~~~~~~~~~~~

L tf the d imension m -  1 , then x t
(’) x( ’) in the_Skorokhod

I 
t~~~~~y (17 1 , Section 14).

Remarks. (8. ~) is the correct limit equation - the analog of

the Wonq-Z~ kai or Stratonovich equation for the modelling of the

output ot a system with approximate jump inputs. We do not quite

4
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have weak convergence or convergence in the Skorokhod metric for

almost all paths, unless the components of the solution to
5J

w = H~~(w)Y are monotonic in [0 ,1] for each Y and w0. To see why,

let m 2. Then it is possible that w1(t), the first (or any other)

component , behaves as in Figure 2; i.e., it does not approach its

value at time 1 monotonically. Let N1() jump V at time ~~ ,

and suppose that there are no other jumps on the interval (L~-L ,O+L 3 .

1’ot small t , the first component of the solution to (8.1) on

( t ~~ ,~~~~+t) is essentially a compression of the (0,1] segment in

L~’iyure 2 to the [0, L ] interval , together with a shift of o in the

time origin. owing to the non-monotonicity , we cannot have weak

convergence - or pathwise convergence in the Skorokhod topology, since

in the limit , as C 0, the compression of the curve in Figure 2 gives

a triple jump at time 0. Because of this, the assertions of

Theorems 6 and 7 are a little awkward .

A main feature of the theorem is the robustness of the result;

the limit does not depend on the precise form of the approximations

J~~(•). Obviously , the interpolation need not be over only an

interval.

Proof. We need treat only one jump and one H. term , owing

to the assumptions on N.(~ ) and on the continuity with respect to

parameters implied by (C2), (C3) and (c5). So return to (8.2) with

(3 set equal to zero.

We change the time scale. Define a monotone increasing function

on (0 ,t J , i (t) L by di/dt p~ or t ( t )  m J p~ds. Thus, i (t ) 1 ,0
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and the inverse t ( t ) exis ts  by ( C 4 ) .  D e f i n e  z t
( t )  = x L

(t(l)).

Then1’
dz L ( t) G (z ~ ( ) ) ~ ( L ) + H (~ 

1 
(1)) y 1 1 , (8 4)

where

—1 dt (L )
p (1) [p (t(t)))

z
t
(0) = x

t
(0).

1I s  t. • •Now J p (l )dL = i and P (~ ) satisties the conditions in (C5). Let

x
t (O) x(0) as s 0. Then x

L (t ) K(x (0),Y) ~ x(0) as 0.

This , together with the continuity conditions (C2), (Ci) , (C5) and

~ concatenation of the argument , implies the theorem . Q.E.D.

9. The Jump-Diffusion Case (1.2); Bounded y(•)

We now return to the full model (1.2). Owing to the possible

non-weak convergence of x
t (.) ‘ x(•) in the pure jump case, due to

the convergence problem at the jump times which was illustrat ed

in connection with Figure 2, the combined jump-diffusion case wi ll be

treated by a ‘piecing together’argument. Here N1
(.), i

are independent Poisson random measures with rates \ 0, jump

distributions D~ () (with bounded support R~ ) and are independent

of y(~~). With A defined by (4.2), define the operator A3 
on

Ô2 by



r

~) ) )

(x) Af (x) Y 
~ f 

(t (x+K
~ 
(x ,~t ) )  - t (x) I t~ . (d a). (L1)

t , et  ~~
(.) denote the jump—diffusion process whose Lnt j fl i t es t uLt l

or on C~ is A3. Except for the f l o f l— c o l l V e L  qeilct 5 
~ o11 em at

the ) U U I ~
) points , x

t 
(~~) will essentially conver’R’ weakly t o  x ()

- o anti ~ t ump ut the ~‘ect ot  valued ~~i

N ) N 3 ,  k I . Let the ~1
h unip be a ump ~ t N 3 ~u~d l~tve

value I . 1~et  t h e  x~ to be the solution of ii. 1.) w i t h  iui t i.t .1

cotid it~ ion x0 
and let ( . ) (q ~ 1) be the solution to (1 . 1) w ith i tt it ta 1

Ct s U~~t i t  ion x ( 
~ 

) , and where y ( .~ +t-+ 3 is used in lieu ot y

Let x ( 3 ~t e i io t  t t he d I ~ fus ion of Sect ions 4 and 5, Wi t.h in it ta 1

~i~~1 i t ~~ ) ~ 
0, and Xq 

( 
~ 1 q L~ 

I

K . (~ ~c —~~~ 1 ,Y ) in general. We will need either (nil or s~D.~l
~ ‘1 ‘1— ~ I

t o  F t 5
~~ 1 ice (C ~) . L e t  A~ (Y) denote the opera t Or Ofl ~ l funct oils

wtt i ctt i s  Jet m e d  by (H~ (w)Y) ‘ 
-

~~~~~

(Dl) ~~ 
~s )/ t  is bounded in s 1 and . The functions F,

~ and LI. are bounded.
— 1.

[ 5 )  ~ ( s ) / t  is bounded in s 1 and . i:ach A . (I) (\‘ t

c~~~seiva t we
is the strong infinitesima l operator of a (de~eneYMeT~

Markov sem i~Jroup mapping (and strongly cent tnuous~~~nl

into C
0
. Also (\—A

~~
(Y))C is dense in 

~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~

V R and i , and sai~ 
\ 0 (which can depend c*~ \ and t).

rem 7. Assume (Al) to (A6), (Cl), (C4) and either (Dl.) ~nd

tC l ) or (D2). Then for each N , (x~~(), q N )  converges to *
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{X
q

(•)~ ci~~ N) weakly in DmN [O ,~~).

Note. The remarks below (A6) apply here also.

Proof. Owing to the independence of N() and y() and right

continuity of y (~ ), y ( ~~~~~~+t+.) has the properties of y(.). Due to

this independence , the independent increments property of N (-) and

the uniqueness and strong Markov property of the x(~ ) of Sections 4

and 5 we can use a “piecing together” method based on the following

assertion s Let a component N~ (•) jump Y at t = ‘-s , with no other

ji.mips on ~i — t , o+ C ],  and let x~(o) xL (s~) ~ x(~ ) weakly as 0 and define

x
t (.’) for t L (o ,o+t) by

= G(x~~,y
L
) + ~ F(x~~,y~~) * H ( (x~~)p~ Y. (9.2)

Then (to be proved) xt (L~+t ) converges weakly to x ( O ) + K (x (’),Y),

as L 0. We will prove only the assertion , and the proof uses a

combination of the ideas in Theorems 2 and 6. For notational simplicity,

let o 0 and drop the index Q1.
As in Theorem 6, change the time scale by defining t (~~) on

- L0 , - )  and w
t (.) by dT (t)/dt = pC (t), w L (t) = x

t
(t(L)) , where t(~~)

is the inverse of t ( ) .  Then

= G(w
t (1),y t

(t(L)))p
t (L) + 

~~~~ 
F(w

t
(L) ,y

t
(t(L)))

+ H(wt (t))V, wt (O) xL (O) (9.3)

I j
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where 
C
) = (p c

(t(t))]~~
l 

= dt(t)/dI . We need only show that,
weak1y~~.

for fixed Y, w
i
ll) converges/to x(0) + K(x(0) ,Y) , the

value at t = 1 of the solution w( ) to w = H(w)Y, w(0) = x(0),

o = 0 We will  actually prove the stronger result of weak convergence

of w~~() to w() in D
m
[O, l ] ,  for each fixed non-random Y.

First, the proof under (D2 ) will be given. Using the method of

Theorem 2, let ~ ~ ~
2 and set ~~C (~~) = 0 arid t ( t )  = t(1) ~ for

1 and define f (w ,L) by (1 1)
— 

f~~(w,’) =

~~~~~~ 

I E~~( t ) F ’ ( w , y
t ( t ( t + s ) ) ) P C (~+s) f W(w) ds. 

-

~~~

- used in
In the def initicri of T~ and AC , use F

~(T) 
just as F~ was / Sections 3 to 5.

Set f
L

( t )  = f(wili)) + Cf
1

(w C (.t), T). Then , it can readily be shown

that f(w
C (t)) and f1(w

C
(I),T) are in the domain of A C 

and that

A
t

f~~i )  = fJ ( (I))[G(wC (t),y C (t(T)))p L
(T)

+ F(w
t
(T),yilt(t))) P~~~~ + H(w t (i))YJ

- F ’ (wC (~ ) Y
L
(t(Tflf (WL ( I ) )  

~~~~~~~ 
+ Lf

1 :~~~
(W

t
( t )  ,

which equals A ( Y ) f ( w i l t ) )  + 0(C) (we droppei the 
~ 

subscript on A(Y)).

This yields convergence of the finite dimensional distributions of

to those of w(-), as in Theorem 2. Tightness is also proved

in the same way as done in Theorem 2, completing the proof under (D2).

/wh ch we us~l in Theor~n 2,
Note that the function f2, is not needed here.

Now , we prove the assertion under (Dl ) and (C3).

In this case 1~ 1
C (1) is bounded uniformly in t 0 and

-— — -
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I L C .
< 1 and w (0) x(0) weakly. Thus iw (S)) is tight in

I ~
m

1o ,13 and so is the function with values

I f t p
L

(I )  £ I C C CJ I F(w (I) ,y (t(i) ) )  + G(w (i) ,y (t(’) ) )p (t) Id’.
0

Consequently, drawing a convergent subsequence and indexing it also

by ~- we have that wil-i converges weakly to a continuous

process w(.). By using a Skorokhod imbedding technique , we can

[ assume for our purposes that the convergence is w.p.l , uniformly

on bounded intervals and write

I’ ~ (v) = ~ (0) + H(~~(s))Yds + u r n  
~~~ C

(

~~

) F(w
C
(I),yilt(,)))d,. (9.4)

0 C 0

We wish to show that the limit in (9.4) iz zero w.p.1 for each v.

If so, then since it is continuous w.p.1, it must be identical

zero w.p.l. Then, by the uniqueness (C3), 
~~
(•) = w(~ ) and the

proof will be concluded .

The limit equals

lim 1V p
1

( i )

El t o

11 by the continuity of F and boundedness of y(~~). Let t~ > 
~.

define ~~ (t) = ~ (mc~) on [mc& ,m~÷~ ) for each integer m. The

(1 difference between the last limit and lim f
’T ~~

goes to zero as i~ -, 0. Thus, we need only show that

I m’~+~ t /
f or each ~~~.

u r n  u ~~ F(~~(mcL),y
C (t(t)))dt is zero w.p.l Now, by changing

1. the time scale back to the original one, the last limit equals

LI
--•-
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u r n  
J

t(m 
~~~~~~~~~~ du. Since t(nct) ÷ 0 for each n as

C t(ma )

-
~ 0 , the results of Theorem 2 imply that this last limit is

zero w.p.l. Q.E.D.

It
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